IRAS 13218+0552

From Wikipedia, the free encyclopedia
IRAS 13218+0552
Hubble Space Telescope image of IRAS 13218+0552
Observation data (J2000 epoch)
ConstellationVirgo
Right ascension13h 24m 19.89s
Declination+05d 37m 04.7s
Redshift0.202806
Heliocentric radial velocity60,800 km/s
Distance2.615 Gly
Apparent magnitude (V)0.085
Apparent magnitude (B)0.112
Surface brightness18.4
Characteristics
TypeSy1, ULIRG
Size0.15' x 0.13'
Notable featuresLuminous infrared galaxy
Other designations
F2M J132419.90+053705.02, PGC 165618, NVSS J132420+053709, H 1321+058, IRAS F13218+0552, LQAC 201+005 001

IRAS 13218+0552 known as SFRS 263, is a galaxy merger located in the Virgo constellation. Its redshift is 0.202806, putting the object at 2.6 billion light-years away from Earth.[1] It is a Seyfert galaxy and a luminous infrared galaxy.

Characteristics[edit]

IRAS 13218+0552 is classfied as a Seyfert type 1.5 galaxy[2] given its large [OIII] flux although XMM-Newton did not observe it. Further studies have showed it as a Seyfert type 2 galaxy instead, as it harbors a highly obscured active galactic nucleus and not of Seyfert 1 type.[3] Moreover, it belongs to the ultraluminous galaxy classification, because according to IRAS, its luminosity range Lir = 1012-1013 L⊙ is found to be approximated by the power law of Φ(L) ~ L-2.35[Mpc-3 mag-1].[4][5]

Besides being a Seyfert galaxy and an luminous inflared galaxy, IRAS 13218+0552 also has a quasar nucleus which is notable for its extreme outflows and has strong star formations.[6] That being said, it resulted from a collision between two gas-rich disk galaxies.[7] An evidence showed both galaxies have orbited each other several times before merging with each other; signs left included distinct loops of glowing gas around the quasar's host.[8] Apart from the loop of gas, IRAS 13218+0552 has a tidal tail feature and possibly binary nucleus with its separation smaller than 1 kpc.[9]

Detected through targeted surveys,[10][11] observations by researchers finds, IRAS 13218+0552 hosts an OH megamaser (OHM), producing a nonthermal emission from the hydroxyl (OH) molecules, with its two main lines situated at 1665/166 MHz and two satellite lines at 1612/1720 MHz.[12] This might be caused by OHM emission being pumped by infrared radiation from the galaxy's environment and also amplification of an intense radio continuum background. Through the observation, IRAS 13218+0552 has an OH spectrum showing two prominent broad emission peaks, having a separation of 490 km s−1 in its rest frame, suggesting being associated with multiple nuclei.[13] This makes IRAS 13218+0552 among 119 OHMs found in ultraluminous galaxies right up to 2014.[14]

References[edit]

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-05-29.
  2. ^ Véron-Cetty, M. -P.; Véron, P. (2006-08-01). "A catalogue of quasars and active nuclei: 12th edition". Astronomy and Astrophysics. 455: 773–777. doi:10.1051/0004-6361:20065177. ISSN 0004-6361.
  3. ^ Bianchi, S.; Guainazzi, M.; Matt, G.; Chiaberge, M.; Iwasawa, K.; Fiore, F.; Maiolino, R. (2005-10-01). "A search for changing-look AGN in the Grossan catalog". Astronomy & Astrophysics. 442 (1): 185–194. doi:10.1051/0004-6361:20053389. ISSN 0004-6361.
  4. ^ Kim, D. -C.; Sanders, D. B. (1998-11-01). "The IRAS 1 Jy Survey of Ultraluminous Infrared Galaxies. I. The Sample and Luminosity Function". The Astrophysical Journal Supplement Series. 119: 41–58. doi:10.1086/313148. ISSN 0067-0049.
  5. ^ Low, F. J.; Cutri, R. M.; Kleinmann, S. G.; Huchra, J. P. "THE PROPERTIES OF INFRARED COLOR-SELECTED QUASARS". The Astrophysical Journal.
  6. ^ Lípari, S.; Terlevich, R.; Díaz, R. J.; Taniguchi, Y.; Zheng, W.; Tsvetanov, Z.; Carranza, G.; Dottori, H. (2003-03-01). "Extreme galactic wind and Wolf-Rayet features in infrared mergers and infrared quasi-stellar objects". Monthly Notices of the Royal Astronomical Society. 340: 289–303. doi:10.1046/j.1365-8711.2003.06309.x. ISSN 0035-8711.
  7. ^ "1996ApJ...473..760B Page 760". adsabs.harvard.edu. Retrieved 2024-05-29.
  8. ^ information@eso.org. "Quasar IRAS 13218+0552". www.spacetelescope.org. Retrieved 2024-05-29.
  9. ^ Darling, Jeremy; Giovanelli, Riccardo (2002-04-01). "The Discovery of Time Variability in OH Megamasers". The Astrophysical Journal. 569: L87–L90. doi:10.1086/340773. ISSN 0004-637X.
  10. ^ Darling, Jeremy; Giovanelli, Riccardo. "A Search for OH Megamasers at z > 0.1. III. The Complete Survey". The Astronomical Journal. doi:10.1086/341166/meta.
  11. ^ Willett, Kyle W. (2012-07-01). "Searching for new OH megamasers out to redshifts z>1". 287: 345–349. doi:10.1017/S1743921312007284. {{cite journal}}: Cite journal requires |journal= (help)
  12. ^ McBride, James; Robishaw, Timothy; Heiles, Carl; Bower, Geoffrey C.; Sarma, Anuj P. (2015-02-01). "Parsec-scale magnetic fields in Arp 220". Monthly Notices of the Royal Astronomical Society. 447: 1103–1111. doi:10.1093/mnras/stu2489. ISSN 0035-8711.
  13. ^ Wu, Zhongzu; Sotnikova, Yu V.; Zhang, Bo; Mufakharov, T.; Zhu, Ming; Jiang, Peng; Chen, Yongjun; Shen, Zhiqiang; Sun, Chun; Peng, Hao; Wu, Hong (2023-01-01). "Radio continuum and OH line emission of high-z OH megamaser galaxies". Astronomy & Astrophysics. 669: A148. doi:10.1051/0004-6361/202245347. ISSN 0004-6361.
  14. ^ Zhang, Jiang-Shui; Li, Di; Wang, Jun-Zhi; Zhu, Qing-Feng; Li, Juan (2019-02). "The potential of FAST in detecting celestial hydroxyl masers and related science topics". Research in Astronomy and Astrophysics. 19 (2): 022. doi:10.1088/1674-4527/19/2/22. ISSN 1674-4527. {{cite journal}}: Check date values in: |date= (help)